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The theory of scattering by charged particle density fluctuations of a plasma
is developed for the case of zero magnetic field. The source current is derived
on the basis of, first, a three-wave interaction between the incident and scattered
electromagnetic waves and one electrostatic plasma wave (either Langmuir or
ion-acoustic), and secondly, a synchronous interaction between the same two
electromagnetic waves and the discrete components of the charged particle
fluctuations. Previous work is generalized by no longer making the assumption
that the frequency of the electromagnetic waves is large compared to the plasma
frequency. The general result is then applied to incoherent scatter, and to scatter
by strongly driven plasma waves. An expansion is carried out for each of these
cases to determine the lower order corrections to the usual high-frequency
scattering formulae. REPRODUCED BY

NATIONAL TECHNICAL
INFORMATION SERVICE

U.S. DEPARTMENT OF COMMERCE
1. Introduction SPRINGFIELD, VA. 22161

The scattering of electromagnetic waves by density fluctuations has been
a topic of general interest for many years. The first derivations, given by Booker
(1955) and Villars & Weisskopf (1955), were based on the idea that density
fluctuations give rise to dipole-moment density fluctuations which in turn cause
the familiar far-field electric dipole radiation. Most studies since then on scattering
use the same basic idea. Rosenbluth & Rostoker (1962) used a technique based
on a far-field expansion of Maxwell's equations, and a source current consisting
of a summation over discrete plasma particles. Birmingham et al. (1965), although
not specifically addressing themselves to the far-field problem, showed that this
scattering formula must be corrected by a factor equal to the refractive index
of the scattered wave. All of these theories are based on the assumption that the
incident and scattered electromagnetic waves are much higher in frequency than
the plasma frequency, and lead to the result that the scattered power is pro-
portional to the spectral density of the electron density fluctuations.
. When the density fluctuations are excited by the random motion of charged

particles, the scattering is referred to as incoherent scatter. The s
coherent scattering of electromagnetic waves by a plasma has ~ e
a number of authors. Dougherty & Farley (1960), Salpeter ) and Fe er <-
(1960), independently calculated the cross-section for rando cherm l uc -
tions of the electron density. Hagfors (1961) extended the eole .X

(NASA-CR-140976) A THEORY FOR SCATTERING N74-77845
BY DENSITY FLUCTUATIONS BASED ON
THREE-WAVE INTERACTION (Stanford Univ.)
16 p Unclas

00/99 03952



436 K. J. Harker and F. W. Crawford

a static magnetic field. Rosenbluth & Rostoker (1962) generalized the theory to
take into account departure from thermal equilibrium. The subject of scattering
by density variations, and in particular incoherent scattering, was thoroughly
reviewed by Bekefi (1966).

In this paper we extend this earlier work. The far field is first determined in
terms of an asymptotic expansion of Maxwell's equations (Lighthill 1960), then
the effects of synchronous interactions are evaluated by solving the Vlasov
equation to second order in the electric field and using the result to calculate
the source currents to second order. One obtains thereby a general theory for
the scattering by density fluctuations for an arbitrary spectrum in E2, fuE and
f2 (where E is the electric field, and f. is that component of the electron velocity
distribution function arising from the discrete nature of charged particles).
The theory is valid for any ratio of the frequency of the electromagnetic waves
to the plasma frequency, subject, of course, to the condition that the frequency
is not so close to a resonance that multiple scattering effects must be included.

In the case of incoherent scatter, we carry the problem forward to a final

solution. We obtain expressions for E 2, fE and f2, and obtain a closed-form
solution in terms of unperturbed particle velocity distribution functions. The
general theory is also applied to the case where the plasma waves are so strongly
driven by an external source that one can neglect the effects of the random
motions of the charged particles.

The results for both the case of arbitrary spectra and for incoherent scatter
show the important result that, in general, the scattered power is no longer
simply proportional to the spectral density of the electron density fluctuations,
as is normally assumed, but that a more subtle dependence is involved.

Since the expressions for the scattered power are somewhat involved, an
expansion is carried out, both for the case of incoherent scatter and strongly
driven waves, in inverse powers of the frequency of the incident electromagnetic
wave. We recover the results of the workers mentioned above and demonstrate,
thereby, that our main results are quite general and encompass previous work
as a subcase.

Our study has been carried out under the assumption that the static magnetic
field is zero, that the charged particle velocity distribution functions are iso-
tropic in velocity space, and that the medium is homogeneous.

We conclude § 1 by reviewing some of the fundamentals of the scattering
process. The source currents responsible for the scattering are determined on
the basis of two types of interaction, one depending on collective effects and
one on discrete particle effects. These two effects arise, in turn, from the fact that
the charged particle distribution function may be resolved into two components.
One is the spatially averaged part associated with plasma waves and collective
effects, and the second is the spatially rapidly fluctuating component which
vanishes when averaged over the macroscopic volume. It arises from the dis-
crete motion of the particles and is basically a thermal fluctuation phenomenon.

As is well known, the mechanism for the collective source current is basically
no more than a three-wave plasma interaction between the incident and scattered
electromagnetic waves on one hand, and a scattering electrostatic plasma wave
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FIGURE 1. Mixing of an incoming transverse wave kf and an electrostatic wave k to

produce a scattered transverse wave k,.

FIGURE 2. Decay of an incoming transverse wave kf into an electrostatic wave k and a

scattered transverse wave k,.
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FIGURE 3. Synchronism diagram for the interaction of two transverse
waves and a Langmuir wave.

on the other hand. The plasma wave may be either a Langmuir or ion-acoustic

wave. A schematic of the process is shown in figures 1 and 2. In figure 1, the

incoming wave (wo,, k,) mixes with the electrostatic plasma wave (o 7, k7 ) to pro-

duce a scattered electromagnetic wave (), = wo, + ,, k, = k6 + k,). In the second

version of the process, shown in figure 2, the incoming electromagnetic wave

(ofl, k.) decays into an electrostatic plasma wave (o), k.) and a scattered electro-

magnetic wave (w. = (o - (a, k, = k6 - k7 ). A synchronism diagram showing the

dispersion curves of the interacting waves and the synchronism parallelogram

for the conditions w) = op + 07,, k, = k ± k. corresponding to figures 1 and 2,

respectively, is shown in figures 3 and 4 for the case where the electrostatic wave

is a Langmuir wave and an ion-acoustic wave, respectively.
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FIGURE 4. Synchronism diagram for the interaction of two transverse
waves and an ion-acoustic wave.

The mechanism for the source current arising from discrete particle effects
is an interaction between the electromagnetic waves again, and the synchronous
Fourier component of the fluctuating discrete component of the electron velocity
distribution functions. This source current is responsible for scattering by
unscreened electrons, i.e. scattering which does not involve collective effects
between the particles.

2. Theory for scattering in terms of current sources
In § 2 we consider the scattering in general, without specifying the current

sources responsible. Our system is described by Maxwell's equations

OH
V x E = -0 ,  (1)

aEVx H = eo + J(1) + J(2), (2)

and the Vlasov equation

+(v.V)f+y(E + v x B). - = 0, (3)

where E and H are the electric and magnetic fields, B is the magnetic induction,
J(1) and J(2) are the current densities to first and second order in the electric field,
f is the electron velocity distribution function, v is the velocity, and 77 is the
the electron charge-to-mass ratio.

Taking the Fourier transform of (1) and (2), then combining, yields

2 E + (J+ ). (4)-[k (k . E ) - k 2 E ] = - E .+ (J () + JZ )).(4
(0 2 a a (4
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The first-order current is given by
6o

J1) = noeve, = -- - p E., (5)

where (0 = noe 2 /meo. (6)
Equation (4) then becomes

ee

c2[k,(k,. E,) - k 2E ] = - eE, + w, J ),7

2 /2
where ea = 1-o/~V . (8)

Taking the dot product of (8) with respect to k. gives

k jka. J2)a
ka. Ea Jk 60 6a(9)

Oa O0 a

Substituting this into (7), and solving for E., yields

E. = j G(Wo,,k) (10)
0) COese a - k

where G = k x (ka x J)), (11)

k (W0) = i. (12)
c

3. Determination of far-field power flux density

We now determine the electric fields in the far-field zone, by taking the inverse
Fourier transform, then applying essentially an asymptotic expansion technique
(Lighthill 1960). The inverse transform of (10) is given by

E(r, t) = 1 0 dk d, expj(o, t -jkG. r) G(,, k_) . (13)
(27T)4 (0 '6eoe, k'( )

If we replace G by its spatial transform, we obtain

E(r, t) = I f- j exp{-jk,,.(r-r')I G(W, r') exp {jw. t} dkdwa dr'.
(2n)4 

- (0a60 C k2- k'(wa)
(14)

Since r > r', the integral over k, can be evaluated in the form

f exp{-jk..(r - r')}dk 2172exp{-jk(w) Ir-r'l}
-m aik~, a ir-r'l

27T2 exp { -Jjk(&.) er. (r- r')} (15)
r

where er = r/r. Finally, the integration over r' yields

1 3 J exp{jwt-jk(w,).r}E(r, t) = G[w, k(w .()]d, (16)
2(27T) -r (16),

where k,(Wa) = ka(W ) er. From (2), the corresponding magnetic field is given by

H(r,t) = 1  f c2j exp{jot-jk,(w).r}kL(wo) x G[OJa,k.((o.)]dWo. (17)
2(2HT 2 - r
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The time-averaged power flow is given byt

2 fiT
P(r) = lim - dtReE(r,t) x H*(r, t), (18)

therefore

P(r) = lim JT dt do, dw'
T-o 2T(27f) 4 -i -

x Re c2 exp {j(eo - w) t-j[k.(wo) - k'(wa)]. r}
( r Wa(wi) eoese;

x G((,, k,(w,)) x [k,(w) x G(wo, k,(o )] . (19)
~)

If T is very large, we may take the limit

- T exp {j(o. - (o )t} dt = 27 (wo, - (o'), (20)

and (19) becomes

1 c
P(r) = lim d2T(2) o r 23 ce G(o , k,(w()) x [k.(w ) x G(w, k.(o))]*.

(21)

Upon substitution of (11) and (12), and simplification, we obtain finally (21)

P(r) = rn Ik x[kxJ(w,),k,(w(,))]|erdw . (22)

T.- T(2-- )3 0 k[r 30

An extra factor of 2 has appeared in (22), because the integration is carried out
over positive frequencies only.

In what follows, it will prove more convenient to write (22) in its differential
form

a2P(r) ew2 V- =r = lim (2 )TV kk, x [k, x J)(w., k,(w,))] er, (23)
T00a TV,,,)o (27T)3TVC3eO 1 a (23

where Q is the solid angle into which wave a is scattered and V is the scattering
volume.

4. Solution of Vlasov equation
In § 3 we derived an expression for the scattered power as a function of the

source current J(2). In § 4 we determine the latter quantity. In our derivation,
we assume an isotropic unperturbed electron velocity distribution function, and
the absence of a static magnetic field. The Fourier transform of (3) has the form

(J o,-k,.v)f,+(E,+vx B,).f- e'+ f1 ) dwo de dk dk,(E + v x B.)

av (27(24)

where f0o, is the unperturbed electron velocity distribution, and the subscripts a,
8, and e refer to waves with frequency-wavenumber pairs (w, kj), (w8 , k.) and

t We have ignored an additional component to the power flow given by
li1 T aw)ae

- lim I T dt e E* a6Y E.
T,.2 T JTA
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(e, ke), respectively. Since the incoming wave is plane and monochromatic, it

has a spectrum of the form

E = (2r)4 E 8(ow- f) 8(k- k8), (25)

and (24) becomes

j(w(-k,.v)f,+y(E,+v x B,).--+ Z n(E +v x B). =f 0, (26)

where 8, e in the summation run over the values

8=l, e = y, (27)

8=y, e=,6. (28)

and y refers to the wave for which the synchronism conditions

W0 = W+), k = k6+ky, (29)

hold.
We may solve (26) iteratively. The first-order solution is given by

f l) Jw~- E.fo + fue, (30)

where f. is the fluctuating part of the solution (Kadomtsev 1965), which vanishes

when averaged over the microscopic volume, and satisfies the equations

(o.-k.v)f. = 0, (31)

<f,,(v)f..,(v')> = (2n7T) 5 8(v - v') 8(w - k. v) 8(o - wa.) 8(k. - k,.)fo(v). (32)

Substituting in (26), we obtain the second-order solution

f '(2) J7 (E +v x B.).- ( ae-kfueS a-ka. v , & -k,.v.

+ (E +v x B.) .-. (33)
wo -k, .v,, " "

5. Second-order source currents

The first-order currents, obtained by substitution of (30) into

J()= e fy(vdv, (34)
f- 00

need not be considered further, since the contribution from the first term on

the right-hand side of (30) has already been accounted for by (5); the second

term does not contain E, as a factor, and therefore does not contribute to the

scattering.
Substituting (33) into

J() = eff(2'vdv (35)

gives a second-order current
Ja) =. + J.( (36)
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where
5 2)__

J2=- 2 V dv(E+vx a (E,.afog/av7
sa -, 6Oa-ke.v x.-w-ke.v (37)

J(2) - D jqe ___

52 = Z jye v dv(E. + v x B).e (38)
8,e f- a-k,.a (38)

6. Source current from collective effects

We shall concentrate first on evaluating J,, the source current due to collective
effects. A partial integration reduces this to

J(2) f - E,- .fo,/l  8 B(E+vx ).ka E +vxBd (39)
81Z v + -e v+ dv. (3 9),y2e -( .f-l.v (w,-k .V)2 v+ -k,.v)

A second partial integration, followed by expansion of the summation according
to (27) and (28), yields

J(2) = - 2e  oe dv E (E + v x B). k,S e M fo Y-ky.v (W - ka.v)2

+ 2E .k, (E8+v x B,).kav E, x Bf I.k, v

S(E,.k,)(Ep+vx Bp) E x B,
(o. -k..v)2(w-ky*.v) ((o.-k..v) ((o -ky.v)

+ +k. E [(Ei +vxB ).k' Ep+vxBfB](w-yv" w-a v)" e-k .vJ

E+ E7 .k + (2ke.Ep)(k.E) )
-p-k,.v (o.-k..v) 2 (p-k,.v) (oa-k..v) 3 V

(k,. E,) E+ (k(_,)i E (40)
'+ - k'8. v) ((, - k.. V)2 " (40)

In obtaining (40), we have used the relations

ka.E, = =0, k,.E =0, BY =0, (41)

which follow from the transverse and longitudinal character of the linearized
electromagnetic and electrostatic waves, respectively.

We shall find it more convenient to write (40) in the form

x kx J - feEEvkffo,(v) dv V(v), (42)
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where
k,, [(w,- k, . v) (e.k,, ) + (k,. k6) (ep. v)]

V(v) = ka x k x. ) 2

Y w(-kv)((oy- ky. v)

2 (k. k) [(wf - k. v)(e. k.) + (k.. k) (e, . v)]v
oB(0G - k 3. v)(o - ky. v)

+ [(k,. .) (e. k) - (e,. k.) (k,. ky)]
+v

(o., - k.. v)2 wp(w - ky. v)

+ (k,. k) [(w -k. v) ep +k,(e,.v)] [kp(e,.k.) - ep(k,.k,)]
(w - k,.v)2W( - ky. v) w(- k. v) (w. k. v)

k7 (&- k# .v) (ep. k,) + (k. kp) (e . v)v+(w - k v)2[ [p(o6 -k.v)2

+ ++ (ofl - k,6. v) efl + (e,6. v) k'.1 e. (k,,. ky)

o(o,- k, v) -, op-k,.v (o,,-ke,.v)2

2(e. k,) (k. k,) v (e . k,)k (43)
+ (o - k .v) (w - k . v) (w0 - k .v)2 ( -0 k .0v) '. 

We know from the synchronism conditions (29) that

(op- k.v) = (o.-k..v)-(wo-k,.v), (44)

k. x ka x k, = k, x k, x (k, + k7) = 0. (45)

Substituting these into (43), and collecting terms, yields

S 1 [[k,.(k-k,)](e.v)ke ,V,(v) = k, x k[ x(k,6)-Lk(,)] - k6. v)k

k((e. k,) v (k,. k)(kk)(e.v) k (ep.k)v
(-k.V)22 (o - ka. v)3 (-k • v)2 w - k.. v

(k .k8)(ep.v)v (e6.v)k, (k,. ky) (k,. v) e,
(o, - kc. v)2 . - k. v, (-;_- k.. v)2 ((o6 - k#. v)

2 (ep.ky)(k..kY) (k.v) v + (e6.k) (k,.v) k (
((oW.-k.v)2(W,-kf.v) ((o- k4.v) (o)- k.v)

7. Source current from discrete particle effects

The source current due to discrete particle effects is obtained in the same
manner as the source current from collective effects. We expand the summation
in (38), using only the term corresponding to (27); this is the only term dependent
on the incoming electromagnetic wave, and therefore represents scattering.
We obtain

fI fuve (4)
J( = je v dv(E, + v x B). ' (47)oU f00 

LaA 
-kma . v

29 PLA 11
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A partial integration reduces this to the form

[Efl+ v xB, (Efl+ v xB,).-k
Jj,_-j ' f, dv[ mv-B E+vB 'kV] (48)S f [) .- k, .v (u). - k. -V)2

Here again we find it more useful to write this as

k X J(2) e E, *
U x = k2xJf=fuedv Vu(v), (49)

where

Vu(v) =k k , x k o xE[ (O- k. v)e, +k ,(e. v)
L 6(w - k.. v)

+ (o -k, . v)(e . k.)+(k.k,) (e,. v) (50)jj. (50)
wfi(w, - k,. V)2 V

8. Scattering formula

We are now in a position to obtain the final scattering formula. Substituting
(42) and (49) into (23) gives

a2P 6i e21e2E81 2 V a
= lim (2.) TVce k yEj , 'foe(v)dV(v)+J edvV(v).

TQO ,)a  TV w 2T3T ce - 0 -00

(51)
Since the incoming flux is given by

8, = 2eoec|E,6 2, (52)

and the classical electron radius by

ro = e2/(4n'e omC2), (53)

the scattering formula can be written simply as

a2P _ lim r1S2 V .vf fuedV )28l m qT Tk yE k, ff°e(v) dv V(v ) +j f fue dv

(54)
Expanding the squared term gives

a2P rlim V Y2k 2

T-2j k T, efi kf ,[E 7 E] __of0 (v) V(v)dv

-2 Rej'k 7 (f foe(v)dv V,(v)). (f O [fuye(v)* E ] V*(v)dv)

+ dv dv'[fuye(v)f~ye(v')] Vu(v). V*(v') . (55)

This equation is the general scattering formula we have sought to derive. If
one knows the spectrum corresponding to IE 2, fu*yeE and I f* 12, and the un-
perturbed velocity distributions then the scattered power is determined.
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10. Incoherent scatter

We shall now take up the case of incoherent scatter, where it is possible to

evaluate (55) explicitly. In this case the assumption that the charged particle

motions are random allows one to evaluate the products of the fluctuating

quantities in the equation. In the appendix we show that these products are

given by
1, r

lim ~ fugre(v)f~ye(v') = 2r(v - v') 8(o. - k. v)f0oe(V), (56)

lim 1 f*ve(v) E = 2rej foe() 8((o, - k. v), (57)
TV6 oey kV

1 2ne2  F
lim E 2= 2 e2  dvfoe(v)(w-k .v)

2v1v TV j |2k- v

+ fdvfoi(v)8(w,-kY.v)]. (58)

Substituting these expressions, and integrating over v', reduces (55) to the form

2 = 2r2 S8 V ( TT(L1. LI) [f foe(v) 8(&o - k,.v)dv

+ f- oi(v) 8( - ky .v) dv] + 2 ReL,. L2 + L3} , (59)

where L = ye fo,(v) V,(v)dv, (60)coey f 0 0
2 = f foe(v) 8( 7 -kO.v) V*(v) dv, (61)

-co

L 3 = f dvfoe(v) &((o - ky. v) V(v) . VU(v)*. (62)
-00

Because of the delta function and (44), we can replace the factor (o - k,. v)

by (o)-kfl. v) in the definitions for L 2 and L3 . Carrying this out, along with
the application of (45), yields the simplerequations

L 2 = - dvfo,(v) (ow7 - ky. v) WU(v), (63)

L3 = dvfo,(V) 8(o - k. v) W,(v). W (v), (64)

where

Wu kxkxe (efl I kj) v - (e,6. v) ky (k, k,) (e. .v) v (5+ J - k,. v (o, .v)] (65)

Equation (59), along with the definition given by (46), (60), (63)-(65), is our final
result describing scattering by random density fluctuations.

29-2
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11. High-frequency expansion for incoherent scatter

Equation (59) is a final result in the sense that it specifies completely the
scattered power once the unperturbed velocity distribution functions are known.
It will be useful, however, to expand this equation in powers of 1/,wp in order
to interpret the meaning of the result, and to compare with previous work.

Let us first expand L1 in (60) to second order in wi 1. This yields, upon applica-
tion of (44), the relation

{ [k.. (k,- k,)] (e,. v) k, k(e,.k,,)v k2
V,(v)=k x k x ' 2  +YV k w (& - ky. v) )(k.v) (k-,k. v)

x[((e..k,)v-(.v, (kyfv - k (k.k,)(e
(66)

If we substitute into this equation the vector identity

v = k- 2[ky(k..v)-k. x k xv], (67)

and collect terms, we obtain

V.(v)= k e (k..k,) (ep. k) }
(v)((o(w-ky.v) 2 kx k x 2 [- (Y ' -k 4v)1]k

+ terms in (k x ky x v). (68)

Finally, substituting into (60) gives

L,= - kx k. e, e+ (k,..k, (e,6-kk) N Y2k,
1 ,6 6y [ 0;8(.k ) 2

+ k k (69)

k4e , )v dv)

where X - f (v)dv(70)
6o -, (o-k.v) 2

is the charged particle susceptibility. In obtaining this result, we have ignored
the terms in V,(v) containing (k. x ky x v), since these give rise to terms of
order (vg/c) 2 , and higher, when dealing with isotropic electron velocity distribution
functions.

Let us now expand L2 in (63). To second order in oji we obtain

L2= fdvfo(V) (% -ky,.v) ! kx kx (ep+ [(e6.k.)v-(ep.v)k,]
[1 +kp.v] (ke.kp) (ep.v)v

x f-+k + (k. ,)(e8-V (71)
,j2 v}}.

We again expand v according to (67), and ignore the component perpendicular
to k7 . This yields, after replacing (ky. v) by wy, the result

L2 ( ) k, x k, x ef+ () 2(e, k(k,.k k] foe(v)( - ky.v)dv.

(72)
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A similar procedure for L3 yields the expression

)2OY 2 (ep..k.) (k~, k,
L3 (k. x (k. x e,)). k. x k,, x efl+ 2 k4

x foe(V)(w 7-ky.v)dv. (73)

We now substitute the expressions for L1, L2, and La into (59), to obtain

a2P 1 22SS V (e 2( (k. x (k. x ep))

2(k.k) (e,.k.) (
I k4 x ;k; Y p+2 q -

[ (IXeYI2-2ReXee+ je, )  fo(v) &(o-k .v)dv

+ IXY ffo(V) '( - ky .v)dv] + 2(k, x (k x k,))

x (k. k,) (ek Re e. e fo 0 (v) ( -k .v)dv

+ Re (XY - ey) fo() (y -ky. v) dv]}. (74)

Using the identities
ev = 1+XeY+XiY, (75)

Ie,12-2Reev X* + IXeYI 2 = I1 +X, (76)2

and rearranging, gives the final form for the expanded incoherent scattering

formula as

a2p 2r0SV (6e j- 2 [1+,I+7 y lfo e(v)8(o -kY.v)dv

+ XeY o 2 (V) 8(o -k.v)dv 1 (e k)2

(e,6. k.)2 (k..k,6)
2 &) 2

+2 k 2 k ) w +2 [Re Xej f_.foi(v) (wy-ky.v)dv

f" ] (ep'k,)' (ke'kfl)= eg
- Re(1+xy) foe(V) (, -k.v)dv k 6 k ) ,2 (77)

When the frequency of the incident electromagnetic wave 0, becomes very

large compared with wo, and (op, the high-frequency incoherent scattering formula

(Bekefi 1966)

a2p 2r 2 S V
an 0 1 [i1 + x' 7I 2Jfo(v) 2(o, - k7

" v) dv
1 + IIf 0"00 foe(v) a( -ky.v)dv 1

+ X2 - ko(V) ,(- 1. V) dV (e8k , (78)
"0 I [ a 78I
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is retrieved. In the case of backscatter, where (e. k,) = 0, (77) reduces to the
even simpler form

a2p 2r2S V[ f
ag = 0fl l1+XY-2fo(v)8(-ky .v)dv

+ IXeYI2 foi(v) 3(, -ky .v)dv . (79)

12. Scattering in case of strongly driven plasma waves

In the case where the coherent waves are so strongly driven by an external
source that the random fluctuations of the charged particles can be ignored, we
may ignore the terms involving fuy, in (55), and the scattering is then given simply
by

a2P r2SfiV I m 2 E7 |2
= 4 (5 22J foe(v) V(v) dv Ilim T . (80)

a~o,,TV-k TV
As in the case of incoherent scatter, it is useful to determine the behaviour for

a high-frequency incident wave. Substituting (60) and (69) into this formula
reduces it to the form

82P _rjSV Ik e[ (eik)2  (k,) 2() 2 1
- 1 | 21  +28a 8@, 7T I k" ka k4 m0

--2ReX,,[(e,*k.)2(k.k,)2 (0, 21 lE 12

k4 X(, lim 1AF 2k \/J V-*o TV "

(81)
If we let f -+ 0 and note that

InY12 6= Xey k E 1, (82)ein,|k , (82)e

we obtain the standard high-frequency formula (Bekefi 1966) given by

2P r2SV[ (e.k)2  in_2
1 2_ lim (83)

M0i i k J TTv- TV (

The (ejefl)i correction to (83), contained in (80), was derived by Birmingham
et al. (1965) by a different method.

13. Summary

A general theory for scattering of electromagnetic waves by density fluctua-
tions in a plasma has been presented. The general scattering formula is given by
(55), (46), and (50). Its application to incoherent scatter is given by (59), (46),
(60), (63)-(65), and to scatter by strongly driven plasma waves by (46) and (80).
The theory generalizes previous high-frequency theories, in that it is valid for
all frequencies of the incident and scattered electromagnetic waves. It does
assume, however, a zero magnetic field, isotropic unperturbed charged particle
velocity distribution functions, and the absence of multiple scattering.
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An expansion for both incoherent scatter and scattering by strongly
driven plasma waves in inverse powers of the frequency oj1 of the incident
electromagnetic wave has been carried out ((77) and (81), respectively). These

expansions show that two types of lower-order corrections must be applied to

the high-frequency theory as the incident electromagnetic wave frequency ap-
proaches the plasma frequency. The first type of correction is of order ( 2/w,)

2 ,
and must be applied irrespective of the value of the difference frequency 0,Y

between the electromagnetic waves. The second correction is of order (wo/wy)2 ,
and is clearly of importance only for scattering by the Langmuir waves. These

lower-order corrections disappear for the case of backscatter.
As the frequency o, of the electromagnetic wave comes closer to o,, then of

course it is necessary to use the full theory ((59), (46), (60), and (63)-(65), or

(46) and (80)). It is important to note that the full theory has non-vanishing
higher-order corrections for the backscatter case, even though the lower-order
corrections mentioned in the previous paragraph disappear.
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Appendix

In this section we will derive the expressions for the space-time averages
given in (56)-(58). Our first step is to derive a relation for the averages in terms
of the ensemble average of the Fourier components. According to Parseval's
theorem, the average of the product of two variables, A(r, t) and B(r, t), is
given by

lo
A(r,t)B(r,t) = lim l A B*dw dk. (Al)

TV-. (2)4TVJ A ( 0)

The ensemble average, on the other hand, is given by

1 1
(A(r, t) B(r, t)) = (2)8) - d, dA)A dk dky,

x <A B* ,) exp [j(. - wy,)t -j(ky - ky,).r]. (A 2)

All of the cases studied in this paper have the property that

(AB*,)> = CO(AB*) 8(o - 0,) 8(ky - ky,),  (A 3)

where C,(AB*) is some function of A, and B*; therefore

(A(r,t)B(r,t)) = (2
1 )s ddkC(AB*). (A 4)

Equating the two averages given by (A 1) and (A 4) yields the desired relation

lim -A, B* = C(AB*). (A 5)
T V -oo Y 7 (2)4. :
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Equation (32) shows that

C,[f,(v)f .* (v')] = (2n)5 8(v - v') 8(o. - k . v)f0 (v). (A 6)

Substituting this into (A 5), with A and B equal to f,(v) andf,(v'), respectively,
yields (56) immediately.

To prove (57) and (58), we shall need to use the linearized Poisson equation

e [ 00 fuve(v) dv+f__ f,7 (v) dv]. (A7)e o -m , -o

If we multiply (A 7) byf,*Y.e(v'), take the ensemble average, and assume that the
ion and electron motids d6 uncorrelated, we obtain

ey kff.y(v') E> = f (f*yv(v')fuye(v)>dv. (A 8)
6o -00

Substituting (32) shows that

C[Ef*,(v)] = 0 v foe(v)(w-k.v). (A 9)

Substituting this result into (A 5), with A and B equal to E and f', respectively,
yields (57).

If we multiply (A 7) by its complex conjugate, and take the ensemble average,
we obtain

<E = E*>. ( fuey(v)fue.,(v')) dv dv'ky k,, e2 ey *1.
-00

+f (o <f,4(v) f.(v')) dv dv']. (A 10)

Substituting (32) allows us to determine C(EE*). If this is in turn substituted
into (A 5), with A and B equal to E, we obtain (58).
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